16 research outputs found

    Comparative evaluation of platforms for parallel Ant Colony Optimization

    Get PDF
    The rapidly growing field of nature-inspired computing concerns the development and application of algorithms and methods based on biological or physical principles. This approach is particularly compelling for practitioners in high-performance computing, as natural algorithms are often inherently parallel in nature (for example, they may be based on a “swarm”-like model that uses a population of agents to optimize a function). Coupled with rising interest in nature-based algorithms is the growth in heterogenous computing; systems that use more than one kind of processor. We are therefore interested in the performance characteristics of nature-inspired algorithms on a number of different platforms. To this end, we present a new OpenCL-based implementation of the Ant Colony Optimization algorithm, and use it as the basis of extensive experimental tests. We benchmark the algorithm against existing implementations, on a wide variety of hardware platforms, and offer extensive analysis. This work provides rigorous foundations for future investigations of Ant Colony Optimization on high-performance platforms

    Bipolar disorders

    Get PDF
    Bipolar disorder is characterized by (hypo)manic episodes and depressive episodes which alternate with euthymic periods. It causes serious disability with poor outcome, increased suicidality risk, and significant societal costs. This chapter describes the findings of the PET/SPECT research efforts and the current ideas on the pathophysiology of bipolar disorder. First, the cerebral blood flow and cerebral metabolism findings in the prefrontal cortex, limbic system, subcortical structures, and other brain regions are discussed, followed by an overview of the corticolimbic theory of mood disorders that explains these observations. Second, the neurotransmitter studies are discussed. The serotonin transporter alterations are described, and the variation in study results is explained, followed by an overview of the results of the various dopamine receptor and transporter molecules studies, taking into account also the relation to psychosis. Third, a concise overview is given of dominant bipolar disorder pathophysiological models, proposing starting points for future molecular imaging studies. Finally, the most important conclusions are summarized, followed by remarks about the observed molecular imaging study designs specific for bipolar disorder.</p

    Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization

    Get PDF
    © 2016 Springer Science+Business Media New York Ant colony optimisation (ACO) is a nature-inspired, population-based metaheuristic that has been used to solve a wide variety of computationally hard problems. In order to take full advantage of the inherently stochastic and distributed nature of the method, we describe a parallelization strategy that leverages these features on heterogeneous and large-scale, massively-parallel hardware systems. Our approach balances workload effectively, by dynamically assigning jobs to heterogeneous resources which then run ACO implementations using different search strategies. Our experimental results confirm that we can obtain significant improvements in terms of both solution quality and energy expenditure, thus opening up new possibilities for the development of metaheuristic-based solutions to “real world” problems on high-performance, energy-efficient contemporary heterogeneous computing platforms
    corecore